Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 15(4)2023 03 24.
Article in English | MEDLINE | ID: covidwho-2321574

ABSTRACT

Influenza D virus (IDV) has been detected in bovine respiratory disease (BRD) outbreaks, and experimental studies demonstrated this virus's capacity to cause lesions in the respiratory tract. In addition, IDV-specific antibodies were detected in human sera, which indicated that this virus plays a potential zoonotic role. The present study aimed to extend our knowledge about the epidemiologic situation of IDV in Swedish dairy farms, using bulk tank milk (BTM) samples for the detection of IDV antibodies. A total of 461 and 338 BTM samples collected during 2019 and 2020, respectively, were analyzed with an in-house indirect ELISA. In total, 147 (32%) and 135 (40%) samples were IDV-antibody-positive in 2019 and 2020, respectively. Overall, 2/125 (2%), 11/157 (7%) and 269/517 (52%) of the samples were IDV-antibody-positive in the northern, middle and southern regions of Sweden. The highest proportion of positive samples was repeatedly detected in the south, in the county of Halland, which is one of the counties with the highest cattle density in the country. In order to understand the epidemiology of IDV, further research in different cattle populations and in humans is required.


Subject(s)
Cattle Diseases , Influenza, Human , Thogotovirus , Animals , Cattle , Humans , Milk , Sweden/epidemiology , Influenza, Human/epidemiology , Farms , Antibodies , Cattle Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary
2.
Transbound Emerg Dis ; 68(6): 3349-3359, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526423

ABSTRACT

The influenza D virus (IDV) was first identified and characterized in 2011. Considering the virus' zoonotic potential, its genome nature (segmented RNA virus), its worldwide circulation in livestock and its role in bovine respiratory disease, an increased interest is given to IDV. However, few data are available on drivers of emergence of IDV. We first listed fifty possible drivers of emergence of IDV in ruminants and swine. As recently carried out for COVID-19 in pets (Transboundary and Emerging Diseases, 2020), a scoring system was developed per driver and scientific experts (N = 28) were elicited to (a) allocate a score to each driver, (b) weight the drivers' scores within each domain and (c) weight the different domains among themselves. An overall weighted score was calculated per driver, and drivers were ranked in decreasing order. Drivers with comparable likelihoods to play a role in the emergence of IDV in ruminants and swine in Europe were grouped using a regression tree analysis. Finally, the robustness of the expert elicitation was verified. Eight drivers were ranked with the highest probability to play a key role in the emergence of IDV: current species specificity of the causing agent of the disease; influence of (il)legal movements of live animals (ruminants, swine) from neighbouring/European Union member states and from third countries for the disease to (re-)emerge in a given country; detection of emergence; current knowledge of the pathogen; vaccine availability; animal density; and transport vehicles of live animals. As there is still limited scientific knowledge on the topic, expert elicitation of knowledge and multi-criteria decision analysis, in addition to clustering and sensitivity analyses, are very important to prioritize future studies, starting from the top eight drivers. The present methodology could be applied to other emerging animal diseases.


Subject(s)
COVID-19 , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , COVID-19/veterinary , Cattle , Europe/epidemiology , Humans , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , SARS-CoV-2 , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control
3.
Methods Mol Biol ; 2203: 41-53, 2020.
Article in English | MEDLINE | ID: covidwho-761345

ABSTRACT

Wild birds are natural hosts of multiple microbial agents, including a wide diversity of coronaviruses. Here we describe a pan-Coronavirus detection RT-PCR method to identify those viruses regardless of the coronavirus genus or nature of the specimen. We also describe a protocol using high-throughput sequencing technologies to obtain their entire genome, which overcomes the inherent difficulties of wild bird coronavirus sequencing, that is, their genetic diversity and the lack of virus isolation methods.


Subject(s)
Bird Diseases/virology , Coronavirus Infections/veterinary , Coronavirus/genetics , Coronavirus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Animals , Animals, Wild , Coronavirus Infections/genetics , RNA-Dependent RNA Polymerase/genetics , Specimen Handling/methods
4.
J Vet Diagn Invest ; 32(4): 585-588, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-603625

ABSTRACT

Influenza D virus (IDV) is considered a new agent involved in bovine respiratory disease (BRD). Based on seroprevalence studies or isolation from clinical samples, this virus has been detected on several continents and in several animal species, including cattle, pigs, camel, horses, and goats. We used an indirect in-house ELISA to detect anti-IDV antibodies in 165 serum samples from bulls on 116 farms in the province of La Pampa, Argentina. Eighty-five of 116 (73%) farms had at least 1 positive animal, and 112 of 165 (68%) of the analyzed samples were positive. There were no significant differences in the proportion of seropositive samples depending on the geographic region in which the samples were taken. Our results suggest that IDV infection is endemic in La Pampa; the clinical importance of IDV in Argentina remains to be investigated.


Subject(s)
Cattle Diseases/epidemiology , Orthomyxoviridae Infections/veterinary , Thogotovirus/isolation & purification , Animals , Antibodies, Viral/blood , Argentina/epidemiology , Cattle , Cattle Diseases/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Male , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Prevalence , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL